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Abstract
We present three different matrix bases that can be used to decompose
density matrices of d-dimensional quantum systems, so-called qudits: the
generalized Gell–Mann matrix basis, the polarization operator basis and the
Weyl operator basis. Such a decomposition can be identified with a vector—
the Bloch vector, i.e. a generalization of the well-known qubit case—and is
a convenient expression for comparison with measurable quantities and for
explicit calculations avoiding the handling of large matrices. We present a
new method to decompose density matrices via so-called standard matrices,
consider the important case of an isotropic two-qudit state and decompose it
according to each basis. In the case of qutrits we show a representation of an
entanglement witness in terms of expectation values of spin-1 measurements,
which is appropriate for an experimental realization.

PACS numbers: 03.65.Ta, 03.65.Ud, 03.67.Mn

1. Introduction

The state of a d-dimensional quantum system—a qudit—is usually described by a d × d

density matrix. For high dimensions, where the matrices become large (for composite systems
of n particles the matrices are of even much larger dimension dn ×dn), a simple way to express
density matrices is of great interest.

Since the space of matrices is a vector space, there exist bases of matrices which can
be used to decompose any matrix. For qubits such a basis contains the three Pauli matrices,
accordingly, a density matrix can be expressed by a three-dimensional vector, the Bloch vector,
and any such vector has to lie within the so-called Bloch ball [1, 2]. Unique for qubits is the
fact that any point on the sphere, Bloch sphere, and inside the ball corresponds to a physical
state, i.e. a density matrix. The pure states lie on the sphere and the mixed ones inside.

In higher dimensions there exist different matrix bases that can be used to express qudits
as (d2 − 1)-dimensional vectors as well. Different to the qubit case, however, is that the
map induced is not bijective: not every point on the ‘Bloch sphere’ in dimensions d2 − 1
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corresponds to a physical state. Nevertheless the vectors are often also called ‘Bloch vectors’
(see in this context, e.g., [3–7]).

In this paper we want to present and compare three different matrix bases for a Bloch
vector decomposition of qudits. In section 2 we propose the properties of any matrix basis
for using it as a ‘practical’ decomposition of density matrices and recall the general notation
of Bloch vectors. In sections 3–5 we offer three different matrix bases: the generalized
Gell–Mann matrix basis, the polarization operator basis and the Weyl operator basis. For
all these bases we give examples in the dimensions of our interest and present the different
Bloch vector decompositions of an arbitrary density matrix in the standard matrix notation.
Next in section 6, by constructing tensor products of states we study the isotropic two-qudit
state and present the results for the three matrix decompositions, i.e. for the three different
Bloch vectors. In section 7 we focus on the isotropic two-qudit state and calculate the
Hilbert–Schmidt measure of entanglement (see, e.g., [8–11]). Its connection to the optimal
entanglement witness is shown, which is determined in terms of the three matrix bases. An
example for the experimental realization of an entanglement witness is given in section 7.2.
The mathematical and physical advantages/disadvantages by using the three different matrix
bases are discussed in section 8, where the final conclusions are also drawn.

2. Preliminaries

A qudit state is represented by a density operator in the Hilbert–Schmidt space acting on the
d-dimensional Hilbert space Hd that can be written as a matrix—the density matrix—in the
standard basis {|k〉} , with k = 1, 2, . . . , d or k = 0, 1, 2, . . . , d − 1.

Properties of a ‘practical’ matrix basis. For practical reasons the general properties of a
matrix basis which is used for the Bloch vector decomposition of qudits are the following:

(i) The basis includes the identity matrix 11 and d − 1 matrices {Ai} of dimension d × d

which are traceless, i.e. Tr Ai = 0.
(ii) The matrices of any basis {Ai} are orthogonal, i.e.

Tr A
†
iAj = Nδij with N ∈ R. (1)

Bloch vector expansion of a density matrix. Since any matrix in the Hilbert–Schmidt space
of dimension d can be decomposed with a matrix basis {Ai}, we can of course decompose a
qudit density matrix as well and get the Bloch vector expansion of the density matrix,

ρ = 1

d
11 + �b · ��, (2)

where �b · �� is a linear combination of all matrices {Ai} and the vector �b ∈ R
d2−1 with

bi = 〈�i〉 = Tr ρ�i is called Bloch vector. The term 1
d

11 is fixed because of condition
Tr ρ = 1.

Remark. Note that a given density matrix ρ can always be decomposed into a Bloch vector,
but not any vector σ that is of form (2) is automatically a density matrix, even if it satisfies the
conditions Tr σ = 1 and Tr σ 2 � 1 since generally it does not imply σ � 0.

Each different matrix basis induces a different Bloch vector lying within a Bloch
hypersphere where, however, not every point of the hypersphere corresponds to a physical
state (with ρ � 0); these points are excluded (holes). The geometric character of the Bloch
space in higher dimensions turns out to be quite complicated and is still of great interest (see
[3–7]).
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All different Bloch hyperballs are isomorphic since they correspond to the same density
matrix ρ. The interesting question is which Bloch hyperball—which matrix basis—is optimal
for a specific purpose, such as the calculation of the entanglement degree or the determination
of the geometry of the Hilbert space or the comparison with measurable quantities.

3. The generalized Gell–Mann matrix basis

3.1. Definition and example

The generalized Gell–Mann matrices (GGM) are higher-dimensional extensions of the Pauli
matrices (for qubits) and the Gell–Mann matrices (for qutrits), they are the standard SU(N)
generators (in our case N = d). They are defined as three different types of matrices and
for simplicity we use here the operator notation, then the density matrices follow by simply
writing the operators in the standard basis (see, e.g. [3, 12]):

(i) d(d−1)

2 symmetric GGM

�jk
s = |j 〉〈k| + |k〉〈j |, 1 � j < k � d; (3)

(ii) d(d−1)

2 antisymmetric GGM

�jk
a = −i|j 〉〈k| + i|k〉〈j |, 1 � j < k � d; (4)

(iii) (d − 1) diagonal GGM

�l =
√

2

l(l + 1)

⎛
⎝ l∑

j=1

|j 〉〈j | − l|l + 1〉〈l + 1|
⎞
⎠ , 1 � l � d − 1. (5)

In total we have d2 − 1 GGM; it follows from the definitions that all GGM are Hermitian
and traceless. They are orthogonal and form a basis, the generalized Gell–Mann matrix basis
(GGB). A proof for the orthogonality of GGB we present in appendix A.1.

Examples. Let us recall the case of dimension 3, the eight Gell–Mann matrices (for a
representation see, e.g., [11, 13])

(i) three symmetric Gell–Mann matrices

λ12
s =

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠, λ13

s =
⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠, λ23

s =
⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠; (6)

(ii) three antisymmetric Gell–Mann matrices

λ12
a =

⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠, λ13

a =
⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠, λ23

a =
⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠; (7)

(iii) two diagonal Gell–Mann matrices

λ1 =
⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠, λ2 = 1√

3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠. (8)

3
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To see how they generalize for higher dimensions we show the case we need for qudits of
dimension d = 4:

(i) six symmetric GGM

�12
s =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠, �13

s =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎟⎠, �14

s =

⎛
⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎟⎠,

(9)

�23
s =

⎛
⎜⎜⎝

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎠, �24

s =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

⎞
⎟⎟⎠, �34

s =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠;

(ii) six antisymmetric GGM

�12
a =

⎛
⎜⎜⎝

0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠, �13

a =

⎛
⎜⎜⎝

0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0

⎞
⎟⎟⎠, �14

a =

⎛
⎜⎜⎝

0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0

⎞
⎟⎟⎠,

(10)

�23
a =

⎛
⎜⎜⎝

0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

⎞
⎟⎟⎠, �24

a =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0

⎞
⎟⎟⎠, �34

a =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

⎞
⎟⎟⎠;

(iii) three diagonal GGM

�1 =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠, �2 = 1√

3

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 0

⎞
⎟⎟⎠, �3 = 1√

6

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3

⎞
⎟⎟⎠.

(11)

Using the GGB we obtain, in general, the following Bloch vector expansion of a density
matrix:

ρ = 1

d
11 + �b · ��, (12)

with the Bloch vector �b = ({
b

jk
s

}
,
{
b

jk
a

}
, {bl}), where the components are ordered and for the

indices we have the restrictions 1 � j < k � d and 1 � l � d −1. The components are given
by b

jk
s = Tr �

jk
s ρ, b

jk
a = Tr �

jk
a ρ and bl = Tr �lρ. All Bloch vectors lie within a hypersphere

of radius |�b| �
√

(d − 1)/2d . For example, for qutrits the Bloch vector components are
�b = (

b12
s , b13

s , b23
s , b12

a , b13
a , b23

a , b1, b2
)

corresponding to the Gell–Mann matrices (6)–(8) and
|�b| �

√
1/3.

As already mentioned the allowed range of �b is restricted. It has an interesting geometric
structure which has been calculated analytically for the case of qutrits by studying two-
dimensional planes in the eight-dimensional Bloch space [3] or numerically by considering
three-dimensional cross-sections [7]. In any case, pure states lie on the surface and the mixed
ones inside.
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3.2. Standard matrix basis expansion by GGB

The standard matrices are simply the d × d matrices that have only one entry 1 and the other
entries 0 and form an orthonormal basis of the Hilbert–Schmidt space. We write these matrices
shortly as operators

|j 〉〈k|, with j, k = 1, . . . , d. (13)

Any matrix can easily be decomposed into a ‘vector’ via a certain linear combination of
matrices (13). Knowing the expansion of matrices (13) into GGB we can therefore find the
decomposition of any matrix in terms of the GGB.

We find the following expansion of standard matrices (13) into GGB :

|j 〉〈k| =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

(
�

jk
s + i�jk

a

)
for j < k

1
2

(
�

kj
s − i�kj

a

)
for j > k

−
√

j−1
2j

�j−1 +
∑d−j−1

n=0
1√

2(j+n)(j+n+1)
�j+n + 1

d
11 for j = k.

(14)

Proof. The first two cases can be easily verified.
To show the last case we first set up a recurrence relation for |l〉〈l|, which we obtain by

eliminating the term
∑l−1

j=1 |j 〉〈j | in the two expressions (5) for �l and �l−1

|l〉〈l| = −
√

l − 1

2l
�l−1 +

√
l + 1

2l
�l + |l + 1〉〈l + 1|, (15)

and we consider the case l + 1 = d

|d − 1〉〈d − 1| = −
√

d − 2

2(d − 1)
�d−2 +

√
d

2(d − 1)
�d−1 + |d〉〈d|. (16)

From �d−1 given by equation (5)

�d−1 =
√

2

(d − 1)d

⎛
⎝d−1∑

j=1

|j 〉〈j | − (d − 1)|d〉〈d|
⎞
⎠ , (17)

we get the Bloch vector decomposition of |d〉〈d|

|d〉〈d| = 1

d

(
−
√

(d − 1)d

2
�d−1 + 11

)
, (18)

where we have applied
∑d−1

j=1 |j 〉〈j | = 11 − |d〉〈d|.
Inserting now decomposition (18) into relation (16) we gain the Bloch vector expansion

for |d − 1〉〈d − 1| and recurrence relation (15) provides |d − 2〉〈d − 2| and so forth. Thus
finally we find

|d − n〉〈d − n| = −
√

d − n − 1

2(d − n)
�d−n−1 +

n−1∑
k=0

1√
2(d − n + k + 1)(d − n + k)

�d−n+k +
1

d
11,

(19)

the relation we had to prove, where d − n = j . �

5
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4. The polarization operator basis

4.1. Definition and examples

The polarization operators in the Hilbert–Schmidt space of dimension d are defined as the
following d × d matrices [4, 14] :

TLM =
√

2L + 1

2s + 1

d∑
k,l=1

C
smk

sml,LM |k〉〈l|. (20)

The used indices have the properties

s = d − 1

2
,

L = 0, 1, . . . , 2s,

M = −L,−L + 1, . . . , L − 1, L,

m1 = s,m2 = s − 1, . . . , md = −s.

(21)

The coefficients C
smk

sml,LM are identified with the usual Clebsch–Gordan coefficients C
jm

j1m1,j2m2

of the angular momentum theory and are displayed explicitly in tables, e.g., in [14].
For L = M = 0 the polarization operator is proportional to the identity matrix [4, 14],

T0 0 = 1√
d

11. (22)

It is shown in [4] that all polarization operators (except T0 0) are traceless, in general not
Hermitian, and that orthogonality relation (1) is satisfied

Tr T
†
L1M1

TL2M2 = δL1L2δM1M2 . (23)

Therefore the d2 polarization operators (20) form an orthonormal matrix basis—the
polarization operator basis (POB)—of the Hilbert–Schmidt space of dimension d.

Examples. The simplest example is of dimension 2, the qubit. For a qubit the POB is given
by the following matrices (s = 1/2;L = 0, 1;M = −1, 0, 1):

T0 0 = 1√
2

(
1 0
0 1

)
, T11 = −

(
0 1
0 0

)
,

(24)

T10 = 1√
2

(
1 0
0 −1

)
, T1−1 =

(
0 0
1 0

)
.

For the next higher dimension d = 3 (s = 1), the case of qutrits, we get nine polarization
operators TLM with L = 0, 1, 2 and M = −L, . . . , L and we have

T11 = − 1√
2

⎛
⎝0 1 0

0 0 1
0 0 0

⎞
⎠, T10 = 1√

2

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠, T1−1 = 1√

2

⎛
⎝0 0 0

1 0 0
0 1 0

⎞
⎠,

T22 =
⎛
⎝0 0 1

0 0 0
0 0 0

⎞
⎠, T21 = 1√

2

⎛
⎝0 −1 0

0 0 1
0 0 0

⎞
⎠, T20 = 1√

6

⎛
⎝1 0 0

0 −2 0
0 0 1

⎞
⎠, (25)

T2−1 = 1√
2

⎛
⎝0 0 0

1 0 0
0 −1 0

⎞
⎠, T2−2 =

⎛
⎝0 0 0

0 0 0
1 0 0

⎞
⎠.

6
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Then the decomposition of any density matrix into a Bloch vector by using the POB has,
in general, the following form:

ρ = 1

d
11 +

2s∑
L=1

L∑
M=−L

bLMTLM = 1

d
11 + �b · �T , (26)

with the Bloch vector �b = (b1−1, b10, b11, b2−2, b2−1, b20, . . . , bLM), where the components
are ordered and given by bLM = Tr T

†
LMρ. In general the components bLM are complex since

the polarization operators TLM are not Hermitian. All Bloch vectors lie within a hypersphere
of radius |�b| �

√
(d − 1)/d .

In two dimensions the Bloch vector �b = (b1−1, b10, b11) is limited by |�b| � 1√
2

and
forms a spheroid [4], the pure states occupy the surface and the mixed ones lie in the volume.
This decomposition is fully equivalent to the standard description of Bloch vectors with Pauli
matrices.

In higher dimensions, however, the structure of the allowed range of �b (due to the positivity
requirement ρ � 0) is quite complicated, as can be seen already for d = 3 (for details, see
[4]). Nevertheless, pure states are on the surface, mixed ones lie within the volume and the
maximal mixed one corresponds to |�b| = 0, thus |�b| is a kind of measure for the mixedness of
a quantum state.

4.2. Standard matrix basis expansion by POB

The standard matrices (13) can be expanded by the POB as [14]

|i〉〈j | =
∑
L

∑
M

√
2L + 1

2s + 1
C

smi

smj ,LMTLM. (27)

Note that
∑

M is actually fixed by the condition mj + M = mi .

Proof. Inserting definition (20) on the right-hand side (RHS) of equation (27) we find

RHS =
∑
k,l

(∑
L

2L + 1

2s + 1
C

smi

smj ,LMC
smk

sml,LM

)
|k〉〈l|

=
∑
k,l

δjlδik|k〉〈l|

= |i〉〈j |, (28)

where we used the sum rule for Clebsch–Gordan coefficients [14]∑
c,γ

2c + 1

2b + 1
Cbβ

aα,cγ C
bβ ′
aα′,cγ = δαα′δββ ′ . (29)

�

5. Weyl operator basis

5.1. Definition and example

Finally, we want to discuss a basis of the Hilbert–Schmidt space of dimension d that consists
of the following d2 operators:

Unm =
d−1∑
k=0

e
2π i
d

kn|k〉〈(k + m)mod d| n,m = 0, 1, . . . , d − 1, (30)

where we use the standard basis of the Hilbert space.

7
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The operators in notation (30) have been introduced in the context of quantum teleportation
of qudit states [15] and are often called Weyl operators in the literature (see e.g. [16–18]). The
d2 operators (30) are unitary and form an orthonormal basis of the Hilbert–Schmidt space

Tr U †
nmUlj = dδnlδmj (31)

(a proof is presented in appendix A.3)—the Weyl operator basis (WOB). They can be used to
create a basis of d2 maximally entangled qudit states [16, 19, 20].

Clearly the operator U0 0 represents the identity U0 0 = 11.

Example. Let us show the example of dimension 3, the qutrit case. There the Weyl operators
(30) have the following matrix form:

U01 =
⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠, U02 =

⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠,

U10 =
⎛
⎝1 0 0

0 e2π i/3 0
0 0 e−2π i/3

⎞
⎠, U11 =

⎛
⎝0 1 0

0 0 e2π i/3

e−2π i/3 0 0

⎞
⎠, U12 =

⎛
⎝0 0 1

e2π i/3 0 0
0 e−2π i/3 0

⎞
⎠,

U20 =
⎛
⎝1 0 0

0 e−2π i/3 0
0 0 e2π i/3

⎞
⎠, U21 =

⎛
⎝0 1 0

0 0 e−2π i/3

e2π i/3 0 0

⎞
⎠, U22 =

⎛
⎝0 0 1

e−2π i/3 0 0
0 e2π i/3 0

⎞
⎠.

(32)

Using the WOB we can decompose quite generally any density matrix into a Bloch vector

ρ = 1

d
11 +

d−1∑
n,m=0

bnmUnm = 1

d
11 + �b · �U, (33)

with n,m = 0, 1, . . . , d − 1 (b0 0 = 0). The components of the Bloch vector �b = ({bnm})
are ordered and given by bnm = Tr Unmρ. In general the components bnm are complex
since the Weyl operators are not Hermitian and the complex conjugates fulfil the relation
b∗

nm = e− 2π i
d

nmb−n−m, which follows easily from definition (30) together with the hermiticity
of ρ.

All Bloch vectors lie within a hypersphere of radius |�b| �
√

d − 1/d. For example,
for qutrits the Bloch vector is expressed by �b = (b01, b02, b10, b11, b12, b20, b21, b22) and
|�b| �

√
2/3. In three and higher dimensions the allowed range of the Bloch vector is quite

restricted within the hypersphere and the detailed structure is not known yet.
Note that in two dimensions the WOB as well as the GGB coincides with the Pauli matrix

basis and the POB represents a rotated Pauli basis (where σ± = 1
2 (σ1 ± iσ2)), in particular

{U0 0, U01, U10, U11} = {11, σ1, σ3, iσ2} , (34){
11, λ12

s , λ12
a , λ1

} = {11, σ1, σ2, σ3} , (35)

{T0 0, T11, T10, T1−1} = {
1√
2

11,−σ+,
1√
2
σ3, σ−

}
. (36)

5.2. Standard matrix basis expansion by WOB

The standard matrices (13) can be expressed by the WOB in the following way:

|j 〉〈k| = 1

d

d−1∑
l=0

e− 2π i
d

ljUl(k−j)mod d . (37)

8
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Proof. We insert the definition of the Weyl operators (30) on the right-hand side of
equation (37), use equation (A.24) and get

RHS = 1

d

d−1∑
l,r=0

e
2π i
d

l(r−j)|r〉〈(r + k − j)mod d|

= |j 〉〈k| +
1

d

d−1∑
r �=j,r=0

d−1∑
l=0

e
2π i
d

l(r−j)|r〉〈(r + k − j)mod d|

= |j 〉〈k|. (38)

�

6. Isotropic two-qudit state

Now we consider bipartite systems in a d × d-dimensional Hilbert space Hd
A ⊗ Hd

B . The
observables acting in the subsystems HA and HB are usually called Alice and Bob in quantum
communication.

Quite generally, a density matrix of a two-qudit state acting on Hd
A ⊗ Hd

B can be
decomposed in the following way (neglecting the reference to A and B):

ρ = 1

d
11 ⊗ 11 + ni�i ⊗ 11 + mi11 ⊗ �i + cij�i ⊗ �j , ni,mi, cij ∈ C, (39)

where {�i} represents some basis in the subspace Hd . The term cij�i ⊗ �j always can be
diagonalized by two independent orthogonal transformations on �i and �j [21]. Altogether
there are (d2)2 − 1 terms.

However, for isotropic two-qudit states—the case we consider in our paper—the second
and third terms in expression (39) vanish and the fourth term reduces to cii�i ⊗ �i , which
implies the vanishing of (d2 − 1)2 + (d2 − 1) = d2(d2 − 1) terms. Consequently, for an
isotropic two-qudit density matrix there remain d2 − 1 independent terms, which provides
the dimension of the corresponding Bloch vector. Thus the isotropic two-qudit Bloch vector
is of the same dimension—lives in the same subspace—as the one-qudit vector, which is a
comfortable simplification.

Explicitly, the isotropic two-qudit state ρ(d)
α is defined as follows [22–24]:

ρ(d)
α = α

∣∣φd
+

〉 〈
φd

+

∣∣ +
1 − α

d2
11, α ∈ R, − 1

d2 − 1
� α � 1, (40)

where the range of α is determined by the positivity of the state. The state
∣∣φd

+

〉
, a Bell state,

is maximally entangled and given by∣∣φd
+

〉 = 1√
d

∑
j

|j 〉 ⊗ |j 〉 , (41)

where {|j 〉} denotes the standard basis of the d-dimensional Hilbert space.

6.1. Expansion into GGB

Let us first calculate the Bloch vector notation for the Bell state
∣∣φd

+

〉 〈
φd

+

∣∣ in the GGB. It is
convenient to split the state into two parts

∣∣φd
+

〉 〈
φd

+

∣∣ = 1

d

d∑
j,k=1

|j 〉〈k| ⊗ |j 〉〈k|

= A + B, (42)

9
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where A and B are defined by

A := 1

d

∑
j<k

|j 〉〈k| ⊗ |j 〉〈k| +
1

d

∑
j<k

|k〉〈j | ⊗ |k〉〈j |, (43)

B := 1

d

∑
j

|j 〉〈j | ⊗ |j 〉〈j |, (44)

and to calculate the two terms separately.
For term A we use the standard matrix expansion (14) for the case j �= k and get

A = 1

4d

⎡
⎣∑

j<k

(
�jk

s + i�jk
a

)⊗ (
�jk

s + i�jk
a

)
+
∑
j<k

(
�jk

s − i�jk
a

)⊗ (
�jk

s − i�jk
a

)⎤⎦
= 1

2d

∑
i<j

(
�jk

s ⊗ �jk
s − �jk

a ⊗ �jk
a

)
. (45)

For term B we need the case j = k in expansion (14) and obtain after some calculations (the
details are presented in appendix A.2)

B = 1

2d

d−1∑
m=1

�m ⊗ �m +
1

d2
11 ⊗ 11. (46)

Thus all together we find the following GGB Bloch vector notations, for the Bell state (42):∣∣φd
+

〉 〈
φd

+

∣∣ = 1

d2
11 ⊗ 11 +

1

2d
�, (47)

and for the isotropic two-qudit state (40)

ρ(d)
α = 1

d2
11 ⊗ 11 +

α

2d
�, (48)

where we defined

� :=
∑
i<j

�jk
s ⊗ �jk

s −
∑
i<j

�jk
a ⊗ �jk

a +
d−1∑
m=1

�m ⊗ �m. (49)

6.2. Expansion into POB

Now we calculate the Bell state
∣∣φd

+

〉 〈
φd

+

∣∣ in the POB. Using expansion (27) and the sum rule
for the Clebsch–Gordan coefficients [14]∑

α,γ

C
cγ

aα,bβC
cγ

aα,b′β ′ = 2c + 1

2b + 1
δbb′δββ ′ , (50)

we obtain

∣∣φd
+

〉 〈
φd

+

∣∣ = 1

d

d∑
i,j=1

|i〉〈j | ⊗ |i〉〈j |

= 1

d

∑
L,L′

√
(2L + 1)(2L′ + 1)

2s + 1

⎛
⎝∑

i,j

C
smi

smj ,LMC
smi

smj ,L′M

⎞
⎠ TLM ⊗ TL′M

= 1

d

∑
L,L′

√
(2L + 1)(2L′ + 1)

2L + 1
δL,L′TLM ⊗ TL′M

10



J. Phys. A: Math. Theor. 41 (2008) 235303 R A Bertlmann and P Krammer

= 1

d

∑
L

TLM ⊗ TLM

= 1

d2
11 ⊗ 11 +

1

d
T , (51)

where we extracted the unity (recall equation (22)) and defined

T :=
∑

L,M �=0,0

TLM ⊗ TLM. (52)

Result (51) provides the POB Bloch vector notation of the isotropic two-qudit state (40)

ρ(d)
α = 1

d2
11 ⊗ 11 +

α

d
T . (53)

6.3. Expansion into WOB

Finally, we present the Bell state in the WOB (the details for our approach using the standard
matrix expression (37) can be found in appendix A.4, see also [16])∣∣φd

+

〉 〈
φd

+

∣∣ = 1

d2
11 ⊗ 11 +

1

d2
U, (54)

with

U :=
d−1∑

l,m=0

Ulm ⊗ U−lm, (l,m) �= (0, 0), (55)

where negative values of the index l have to be considered as mod d, and from formula (54)
we find the WOB Bloch vector notation of the isotropic two-qudit state

ρ(d)
α = 1

d2
11 ⊗ 11 +

α

d2
U. (56)

7. Applications of the matrix bases

7.1. Entangled isotropic two-qudit states

In [11] the connection between the Hilbert–Schmidt (HS) measure of entanglement [8–10] and
the optimal entanglement witness is investigated. Explicit calculations for both quantities are
presented in the case of isotropic qutrit states. For higher dimensions, the isotropic two-qudit
states, the above quantities are determined as well but in terms of a rather general matrix basis
decomposition. With the results of the present paper we can calculate all quantities explicitly.
Let us recall the basic notations we need.

The HS measure is defined as the minimal HS distance of an entangled state ρent to the
set of separable states S

D(ρent) := min
ρ∈S

‖ρ − ρent‖ = ‖ρ0 − ρent‖ , (57)

where ρ0 denotes the nearest separable state, the minimum of the HS distance.
An entanglement witness A ∈ A (A = AA ⊗AB , the HS space of operators acting on the

Hilbert space of states) is a Hermitian operator that ‘detects’ the entanglement of a state ρent

via inequalities [10, 25–27].

11
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Figure 1. Illustration of the Bertlmann–Narnhofer–Thirring theorem (62).

Definition 1. An entanglement witness A is an operator with the following properties: the
expectation value of A is negative for an entangled state, whereas it is non-negative for any
separable state.

〈ρent, A〉 = Tr ρentA < 0,

〈ρ,A〉 = Tr ρA � 0 ∀ρ ∈ S.
(58)

The fact, however that there exists a Hermitian operator satisfying inequalities (58) for
any entangled state, i.e. that the definition is meaningful, has to be proved; it follows from the
Hahn–Banach theorem of functional analysis (for a simple geometric approach, see [11]).

An entanglement witness is ‘optimal’, denoted by Aopt, if apart from equation (58) there
exists a separable state ρ0 ∈ S such that

〈ρ0, Aopt〉 = 0. (59)

The operator Aopt defines a tangent plane to the set of separable states S and all states ρp with
〈ρp,Aopt〉 = 0 lie within that plane; see figure 1.

Let us call the lower one of the inequalities (58) an entanglement witness inequality,
EWI. It detects entanglement whereas a Bell inequality determines non-locality. Rewriting
equation (58) as

〈ρ,A〉 − 〈ρent, A〉 � 0 ∀ρ ∈ S, (60)

the maximal violation of the EWI is defined by

B(ρent) = max
A,‖A−a11‖�1

(
min
ρ∈S

〈ρ,A〉 − 〈ρent, A〉 ), (61)

where the maximum is taken over all possible entanglement witnesses A, suitably normalized.
Then an interesting connection between the HS measure and the concept of entanglement

witnesses is given by the Bertlmann–Narnhofer–Thirring theorem, illustrated in figure 1 [10].

Theorem 1.

(i) The maximal violation of the EWI is equal to the minimal distance of ρent to the set S

B(ρent) = D(ρent). (62)

(ii) The maximal violation of the EWI is attained for an optimal entanglement witness

Aopt = ρ0 − ρent − 〈ρ0, ρ0 − ρent〉 11

‖ρ0 − ρent‖ . (63)

12
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Thus the calculation of the optimal entanglement witness Aopt to a given entangled state ρent

reduces to the determination of the nearest separable state ρ0. In special cases ρ0 is detectable
but in general its detection is quite a difficult task. We are able to find the nearest separable
state by working with lemma 1, a method we call guess method [11].

Lemma 1. A state ρ̃ is equal to the nearest separable state ρ0 if and only if the operator

C̃ = ρ̃ − ρent − 〈ρ̃, ρ̃ − ρent〉11

‖ρ̃ − ρent‖ (64)

is an entanglement witness.

Lemma 1 probes if a guess ρ̃ is indeed correct for the nearest separable state, then operator C̃

represents the optimal entanglement witness Aopt (63).
Now let us apply the matrix bases we discussed in the previous sections and calculate the

quantities introduced above. As an entangled state we consider the isotropic two-qudit state
ρ(d),ent

α , that is the state ρ(d)
α (40) for 1

d+1 < α � 1.
Starting with the GGB we can express that state in our Bloch vector notation by formula

(48). By using lemma 1 we find that the nearest separable state is reached at α = 1
d+1

ρ
(d)
0 = ρ

(d)

α= 1
d+1

= 1

d2
11 ⊗ 11 +

1

2d(d + 1)
�. (65)

It provides the HS measure

D
(
ρ

(d)
α,ent

) = ∥∥ρ(d)
0 − ρ

(d)
α,ent

∥∥ =
√

d2 − 1

d

(
α − 1

d + 1

)
, (66)

and the optimal entanglement witness (63)

Aopt
(
ρ

(d)
α,ent

) = 1

d

√
d − 1

d + 1
11 ⊗ 11 − 1

2
√

d2 − 1
�, (67)

where we used the HS norm ‖�‖ = 2
√

d2 − 1.
Clearly, the maximal violation B of the EWI equals the HS measure D

B
(
ρ

(d)
α,ent

) = −〈ρ(d)
α,ent, Aopt

〉
=

√
d2 − 1

d

(
α − 1

d + 1

)
= D

(
ρ

(d)
α,ent

)
. (68)

For expressing above quantities by the matrix bases POB and WOB it suffices to calculate
the proportionality factors between �, T and U . By comparison of the three forms for the
isotropic qudit state (48), (53) and (56) we find

� = 2T and T = 1

d
U. (69)

It provides the following expressions, for the POB

ρ
(d)
0 = ρ

(d)

α= 1
d+1

= 1

d2
11 ⊗ 11 +

1

d(d + 1)
T , (70)

Aopt(ρ
(d)
α,ent) = 1

d

√
d − 1

d + 1
11 ⊗ 11 − 1√

d2 − 1
T , (71)
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and for the WOB

ρ
(d)
0 = ρ

(d)

α= 1
d+1

= 1

d2
11 ⊗ 11 +

1

d2(d + 1)
U, (72)

Aopt
(
ρ

(d)
α,ent

) = 1

d

√
d − 1

d + 1
11 ⊗ 11 − 1

d
√

d2 − 1
U. (73)

Of course, the HS measure D
(
ρ

(d)
α,ent

)
remains the same expression (66) independent of

the chosen matrix basis, which can easily be verified using ‖T ‖ = √
d2 − 1 and ‖U‖ =

d
√

d2 − 1.

7.2. Entanglement witness representation for experiments

Entanglement witnesses are Hermitian operators and therefore observables that should be
measurable in a given experimental set-up and thus provide an experimental verification of
entanglement. The quantity to be measured is the expectation value

〈A〉 = Tr Aρ (74)

of an entanglement witness A for some state ρ. If 〈A〉 < 0 then the state ρ is entangled. But
which measurements have to be performed?

Obviously it is appropriate to express the entanglement witness in terms of generalized
Gell–Mann matrices (3)–(5), since they are Hermitian. For d = 3—qutrits—the Gell–Mann
matrices (6)–(8) can be expressed in terms of eight ‘physical’ operators, the observables
Sx, Sy, Sz, S

2
x , S

2
y , {Sx, Sy}, {Sy, Sz}, {Sz, Sx} of a spin-1 system, where �S = (Sx, Sy, Sz) is

the spin operator and {Si, Sj } = SiSj + SjSi (with i, j = x, y, z) denotes the corresponding
anticommutator. The decomposition of the Gell–Mann matrices into spin-1 operators is as
follows (for a similar expansion, see [7]):

λ12
s = 1√

2h̄2
(h̄Sx + {Sz, Sx}) , λ13

s = 1

h̄2

(
S2

x − S2
y

)
,

λ23
s = 1√

2h̄2
(h̄Sx − {Sz, Sx}) , λ12

a = 1√
2h̄2

(h̄Sy + {Sy, Sz}),

λ13
a = 1

h̄2 {Sx, Sy}, λ23
a = 1√

2h̄2
(h̄Sy − {Sy, Sz}),

λ1 = 211 +
1

2h̄2

(
h̄Sz − 3S2

x − 3S2
y

)
, λ2 = 1√

3

(
−211 +

3

2h̄2

(
h̄Sz + S2

x + S2
y

))
.

(75)

All operators can be represented by the following matrices:

Sx = h̄√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, Sy = h̄√

2

⎛
⎝0 −i 0

i 0 −i
0 i 0

⎞
⎠, Sz = h̄

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠,

S2
x = h̄2

2

⎛
⎝1 0 1

0 2 0
1 0 1

⎞
⎠, S2

y = h̄2

2

⎛
⎝1 0 −1

0 2 0
−1 0 1

⎞
⎠,

14
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{Sx, Sy} = h̄2

⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠, {Sy, Sz} = h̄2

√
2

⎛
⎝0 −i 0

i 0 i
0 −i 0

⎞
⎠,

{Sz, Sx} = h̄2

√
2

⎛
⎝0 1 0

1 0 −1
0 −1 0

⎞
⎠. (76)

Thus we can express any observable on a n-qutrit Hilbert space—a composite system of n
particles with 3 degrees of freedom—in terms of above spin operators (76).

As an example we want to study the entanglement witness for the isotropic two-qutrit
state, i.e. state (40) for d = 3. In this case we obtain for the optimal entanglement witness

Aiso = 1
3
√

2

(
11 ⊗ 11 − 3

4�
)
, (77)

(i.e. equation (67) for d = 3), where the operator � is defined in equation (49).
Expressing the Gell–Mann matrices in � (49) by the spin operator decomposition (75)

we find for the expectation value of the entanglement witness Aiso

〈Aiso〉 = 1
3
√

2
〈11 ⊗ 11〉 − 1

4
√

2
〈�〉 , (78)

where

〈�〉 = 1

h̄2 (〈Sx ⊗ Sx〉 − 〈Sy ⊗ Sy〉 + 〈Sz ⊗ Sz〉) +
16

3
〈11 ⊗ 11〉

− 4

h̄2

(〈
11 ⊗ S2

x

〉
+
〈
11 ⊗ S2

y

〉
+
〈
S2

x ⊗ 11
〉
+
〈
S2

y ⊗ 11
〉)

+
4

h̄4

(〈
S2

x ⊗ S2
x

〉
+
〈
S2

y ⊗ S2
y

〉)
+

2

h̄4

(〈
S2

x ⊗ S2
y

〉
+
〈
S2

y ⊗ S2
x

〉)
+

1

h̄4 (〈{Sz, Sx} ⊗ {Sz, Sx}〉 − 〈{Sy, Sz} ⊗ {Sy, Sz}〉 − 〈{Sx, Sy} ⊗ {Sx, Sy}〉). (79)

Decomposition (79) has to be determined experimentally by measuring the several expectation
values with the set-ups on both Alice’s and Bob’s side.

The advantage of the entanglement witness procedure is that for an experimental outcome
〈Aiso〉 < 0 the considered quantum state is definitely entangled, whereas in the case of Bell
inequalities a violation detects nonlocal states. That means by the entanglement witness
procedure we are able to detect more entangled states than with Bell inequalities. The amount
of measurement steps necessary to determine an entanglement witness is about the same as in
the Bell inequality procedure (see, e.g., [28–31]).

8. Conclusion

In this paper we present three different matrix bases which are quite useful to decompose
density matrices for higher-dimensional qudits. These are the generalized Gell–Mann matrix
basis, the polarization operator basis and the Weyl operator basis. Each decomposition we
identify with a vector, the so-called Bloch vector.

Considering just one-particle states we observe the following features: the generalized
Gell–Mann matrix basis is easy to construct, the matrices correspond to the standard SU(N)
generators (N = d), but in general (in d dimensions) it is rather unpractical to work with the
diagonal matrices (5) due to their more complicated definition. On the other hand, the Bloch
vector itself has real components, which is advantageous, they can be expressed as expectation
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values of measurable quantities. For example, in three dimensions the Gell–Mann matrices
are Hermitian and the Bloch vector components can be expressed by expectation values of
spin-1 operators. The polarization operator basis is also easy to set up, all you need to know
are the Clebsch–Gordan coefficients which you find tabulated in the literature. However, the
Bloch vector contains complex components. For the Weyl operator basis the corresponding
operators are again simple to construct, they are non-Hermitian but unitary. The Bloch vector
itself has a very simple structure, however, with complex components. Let us note that in
two dimensions all bases are equivalent since they correspond to Pauli matrices or linear
combinations thereof.

In the case of two-qudits we have studied the isotropic states explicitly and find the
following: in the generalized Gell–Mann matrix basis the Bloch vector (48) with expression
(49) is more complicated to construct, in particular the diagonal part B (46) (see appendix
A.2). In the polarization operator basis the Bloch vector (53) with expression (52) can easily
be set up by knowledge of the Clebsch–Gordon coefficient sum rule (50) and in the Weyl
operator basis the Bloch vector (56) with definition (55) is actually most easily to construct.

The Hilbert–Schmidt measure of entanglement can be calculated explicitly for all isotropic
two-qudit states and we want to emphasize its interesting connection to the maximal violation
of the entanglement witness inequality, theorem 1.

For the experimental realization of an entanglement witness the generalized Gell–Mann
matrix basis is the appropriate one since the generalized Gell–Mann matrices are Hermitian.
For a different task, however, the determination of the geometry of entanglement the Weyl
operator basis turns out to be optimal. In our example of the entangled isotropic two-qutrit
state the entanglement witness can be expressed by experimental quantities, the expectation
values of spin-1 measurements. In this way one can experimentally find out whether a state is
entangled or not, i.e. we can obtain rather precise information on the quality of entanglement.

Quite generally, the Bloch vector decomposition into one of the three matrix bases is
of particular advantage in the construction of entanglement witnesses. It turns out that if the
coefficients of the decomposition satisfy a certain condition the considered operator represents
an entanglement witness, i.e. satisfies inequalities (58) (for details see [32]).
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Appendix

A.1. Proof of orthogonality of GGB

We want to prove condition (1) for the GGB which consists of the d2 − 1 GGM (3)–(5) and
the d × d unity 11. Since all GGM are Hermitian (thus Tr A

†
iAj = Tr AiAj = Tr AjAi) it

suffices to prove the following conditions:

Tr �jk
s �mn

s = 2δjmδkn (A.1)

Tr �jk
a �mn

a = 2δjmδkn (A.2)

Tr �l�m = 2δlm (A.3)

Tr �jk
a �mn

s = 0 (A.4)
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Tr �jk
s �m = 0 (A.5)

Tr �jk
a �m = 0. (A.6)

Proof of condition (A.1). Inserting definition (3) we have

Tr �jk
s �mn

s =
d∑

l=1

〈l|(|j 〉〈k| + |k〉〈j |)(|m〉〈n| + |n〉〈m|)|l〉

=
∑

l

(〈l|j 〉〈k|m〉〈n|l〉 + 〈l|j 〉〈k|n〉〈m|l〉 + 〈l|k〉〈j |m〉〈n|l〉 + 〈l|k〉〈j |n〉〈m|l〉)

= δjnδkm + δjmδkn + δknδjm + δkmδjn

= 2δjmδkn, (A.7)

where we used in the last step that δjnδkm = 0 since we have j < k and m < n.

Proof of condition (A.2). This case is equivalent to that before apart from changed signs that
do not matter

Tr �jk
a �mn

a = −δjnδkm + δjmδkn + δknδjm − δkmδjn

= 2δjmδkn. (A.8)

Proof of condition (A.3). Using definition (5) and denoting

Cl =
√

2

l(l + 1)
, (A.9)

where l � m without loss of generality, we get

Tr �l�m = ClCm

d∑
p=1

(
l∑

k=1

m∑
n=1

〈p|k〉〈k|n〉〈n|p〉 + lm〈p|l + 1〉〈l + 1|m + 1〉〈m + 1|p〉

−m

l∑
k=1

〈p|k〉〈k|m + 1〉〈m + 1|p〉 − l

m∑
n=1

〈p|l + 1〉〈l + 1|n〉〈n|p〉
)

= ClCm

(
l + lmδlm − m

l∑
k=1

δk(m+1) − l

m∑
n=1

δn(l+1)

)
. (A.10)

Using the fact that δk(m+1) = 0 for m � k and

l

m∑
n=1

δn(l+1) =
{

0 if l = m

l if l < m
(A.11)

we obtain

Tr �l�m = (Cl)
2l(l + 1)δlm = 2δlm. (A.12)

Proof of condition (A.4). Analogously to proofs (A.7) and (A.8) we find

Tr �jk
a �mn

s = i(−δjnδkm + δjmδkn − δjmδkn + δjnδkm) = 0. (A.13)
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Proof of condition (A.5). Inserting definitions (3) and (5) gives

Tr �jk
s �m = Cm

d∑
p=1

⎛
⎝−m〈p|k〉〈j |m + 1〉〈m + 1|p〉 − m〈p|j 〉〈k|m + 1〉〈m + 1|p〉

+
m∑

n=1

〈p|j 〉〈k|n〉〈n|p〉 +
m∑

n=1

〈p|k〉〈j |n〉〈n|p〉
⎞
⎠

= −2mδj(m+1)δk(m+1) + 2
m∑

l=1

δklδjl

= 0, (A.14)

since per definition we have j < k.

Proof of condition (A.6). This proof is equivalent to the previous one since constant factors in
front of the terms do not matter.

A.2. Calculation of term B in GGB

To obtain the Bloch vector notation of term B (44) we insert the standard matrix expansion
(14) for the case j = k. We split the tensor products in the following way:

B = 1

d

(
B1 + B2 + B3 + B4 +

1

d
11 ⊗ 11

)
, (A.15)

where the terms B1, . . . , B4 are introduced by (note that �0 = 0)

B1 =
d∑

j=1

⎛
⎝j − 1

2j
�j−1 ⊗ �j−1 +

d−j−1∑
n(=l)=0

1

2(j + n)(j + n + 1)
�j+n ⊗ �j+n

⎞
⎠ (A.16)

B2 =
d∑

j=1

(
−

d−j−1∑
l=0

√
j − 1

4j (j + l)(j + l + 1)
�j−1 ⊗ �j+l

−
d−j−1∑

n=0

√
j − 1

4j (j + n)(j + n + 1)
�j+n ⊗ �j−1

+
d−j−1∑

n�=l,n,l=0

1

2
√

(j + n)(j + n + 1)(j + l)(j + l + 1)
�j+n ⊗ �j+l

⎞
⎠ (A.17)

B3 = 1

d

d∑
j=1

(
−
√

j − 1

2j
�j−1 ⊗ 11 +

d−j−1∑
n=0

1√
2(j + n)(j + n + 1)

�j+n ⊗ 11

)
(A.18)

B4 = 1

d

d∑
j=1

(
−
√

j − 1

2j
11 ⊗ �j−1 +

d−j−1∑
l=0

1√
2(j + l)(j + l + 1)

11 ⊗ �j+l

)
. (A.19)

Only the first term B1 (A.16) gives a contribution

B1 =
d−1∑
m=1

(
m

2(m + 1)
+

m

2m(m + 1)

)
�m ⊗ �m = 1

2

d−1∑
m=1

�m ⊗ �m, (A.20)
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whereas the remaining terms vanish:

B2 =
d−1∑

m<p,m,p=1

(
−
√

m

4(m + 1)p(p + 1)
+

m√
4m(m + 1)p(p + 1)

)
�m ⊗ �p

+
d−1∑

m>p,m,p=1

(
−
√

p

4(p + 1)m(m + 1)
+

p√
4p(p + 1)m(m + 1)

)
�m ⊗ �p

=
(∑

m<p

−m + m

2
√

m(m + 1)p(p + 1)
+
∑
m>p

−p + p

2
√

m(m + 1)p(p + 1)

)
�m ⊗ �p

= 0, (A.21)

and in quite the same manner

B3 = 1

d

d−1∑
m=1

−m + m√
2m(m + 1)

�m ⊗ 11 = 0,

B4 = 1

d

d−1∑
p=1

−p + p√
2p(p + 1)

11 ⊗ �p = 0.

(A.22)

Thus we find the following Bloch vector of B (44):

B = 1

2d

d−1∑
m=1

�m ⊗ �m +
1

d2
11 ⊗ 11. (A.23)

A.3. Proof of orthonormality of WOB

For proofs relevant in the WOB we often need the equivalence

d−1∑
n=0

e
2π i
d

nx =
{
d if x = 0
0 if x �= 0,

x ∈ Z. (A.24)

So we use equation (A.24) to prove orthonormality (31) of the Weyl operators (30)

Tr U †
nmUlj =

d−1∑
p=0

d−1∑
k,k̃=0

e
2π i
d

(k̃l−kn)〈p|(k + m)mod d〉〈k|k̃〉〈(k̃ + j)mod d|p〉

=
d−1∑
p=0

d−1∑
k,k̃=0

e
2π i
d

(k̃l−kn)〈p|(k + m)mod d〉〈(k̃ + j)mod d|p〉δkk̃

=
d−1∑
k=0

e
2π i
d

k(l−n)δmj

= dδnlδmj . (A.25)

A.4. Expansion into WOB

Formula (54) for the Bell state in terms of WOB we derive in the following way. We express
the standard matrices by the WOB (37), rewrite the indices and separate the nonvanishing
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terms

∣∣φd
+

〉 〈
φd

+

∣∣ = 1

d

d∑
j,k=1

|j 〉〈k| ⊗ |j 〉〈k|

= 1

d3

d−1∑
j,k=0

d−1∑
l,l′=0

e− 2π i
d

j (l+l′)Ul(k−j)mod d ⊗ Ul′(k−j)mod d

= 1

d3

d−1∑
m,k=0

d−1∑
l,l′=0

e− 2π i
d

(k−m)(l+l′)Ulm ⊗ Ul′m

= 1

d2

⎛
⎝∑

m

U0m ⊗ U0m +
∑
m

∑
l,l′;l+l′=d

Ulm ⊗ Ul′m

⎞
⎠

+
1

d3

∑
m

∑
l,l′;l,l′ �=0,0;l+l′ �=d

(∑
k

e− 2π i
d

(k−m)(l+l′)

)
Ulm ⊗ Ul′m. (A.26)

The last term in equation (A.26) vanishes due to relation (A.24). Identifying U0 0 = 11 and
using the notation with negative values of the index l, which have to be considered as mod d,
we gain the formula

∣∣φd
+

〉 〈
φd

+

∣∣ = 1

d2
11 ⊗ 11 +

1

d2

d−1∑
l,m=0

Ulm ⊗ U−lm, (l,m) �= (0, 0). (A.27)
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